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Abstract. We investigate deuteron two-body photodisintegration within the framework of the Quark-Gluon
Strings Model with nonlinear baryon Regge trajectories. Special attention is paid to the use of QCD mo-
tivated Regge trajectories of the logarithmic and square-root form. We find that the recent experimental
data from TJNAF in the few-GeV region can be reasonably described by the model. Angular distribu-
tions at different γ-energies are presented and the effect of a forward-backward asymmetry is discussed.
Predictions for the energy dependence of dσ/dt at higher energies and different Θc.m. are presented, too.

PACS. 12.40.Nn Regge theory, duality, absorptive/optical models – 12.40.Vv Vector-meson dominance –
13.40.-f Electromagnetic processes and properties – 25.20.-x Photonuclear reactions

1 Introduction

Recent experiments on high energy two-body photodisin-
tegration of the deuteron [1–3] have brought up interesting
results: while the 89◦ and 69◦ data are consistent with the
constituent-quark counting-rule behavior [4] (i.e. at fixed
c.m. angle the differential cross-section dσ/dtγd→pn scales
as ∼ s−11), the 36◦ and 52◦ data do not show a scaling
behavior at all up to 4.0 GeV photon energy. Thus pertur-
bative QCD (PQCD) cannot be applied at these energies
at forward angles and nonperturbative approaches have to
be used instead.

Some time ago a nonperturbative approach based on
the Quark-Gluon Strings Model (QGSM) has been applied
to the analysis of the angular and energy dependence of
the differential cross-section for the γd → pn reaction in
the few-GeV energy region [5]. In the QGSM —proposed
in ref. [6] for the description of binary hadronic reactions—
the amplitude of the reaction γd → pn is described by the
exchange of three valence quarks in the t-channel with
any number of gluon exchanges between them. This pro-
cess is visualized in fig. 1, where a) and b) describe the
exchange of three valence quarks in the t- and u-channels,
respectively.

We recall that the QGSM is based on two ingredients:
i) a topological expansion in QCD and ii) the space-time
picture of the interactions between hadrons, that takes
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Fig. 1. Diagrams describing three valence quark exchanges in
t- (a) and u-channels (b).

into account the confinement of quarks. The 1/N expan-
sion in QCD (where N is the number of colors Nc or fla-
vors Nf) was proposed by ’t Hooft [7]; the behavior of
different quark-gluon graphs according to their topology,
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furthermore, was analyzed by Veneziano [8] with the result
that in the large N limit the planar quark-gluon graphs
become dominant. This approach based on the 1/Nf ex-
pansion [8] with Nc ∼ Nf was used by Kaidalov [6,9] in
the formulation of the QGSM. Again for sufficiently large
Nf the simplest planar quark-gluon graphs give the domi-
nant contribution to the amplitudes of binary hadronic re-
actions. Moreover, it can be shown that in the space-time
representation the dynamics described by planar graphs
corresponds to the formation and break-up of a quark-
gluon string (or color tube) in various intermediate states
(see, e.g. refs. [10–14]). Here the quark-gluon string can
be identified with a corresponding Regge trajectory1. In
this sense the QGSM can be considered as a microscopic
model of Regge phenomenology and be used for the calcu-
lation of different parameters, that have been considered
before only on a phenomenological level.

As shown in refs. [6,9] the QGSM describes rather well
the experimental data on exclusive and inclusive hadronic
reactions at high energy. Moreover, due to the duality
property of scattering amplitudes this approach can also
be applied at intermediate energies for reactions with-
out explicit resonances in the direct channel. In fact, this
model successfully describes the reactions pp → dπ+,
p̄d → MN and γd → pn at intermediate energies, too,
where the diagrams with three valence quark exchanges
in the t-channel were found to be dominant (cf. refs. [5,
15,16]). However, in all those cases the explicit spin struc-
ture of the corresponding amplitudes was not taken into
account. On the other hand, spin effects and the transver-
sal polarization of the photon lead to a nontrivial angular
dependence of the residue of the amplitude for the reac-
tion γd → pn as discussed in ref. [5]. In this paper we will
use an extended approach to the spin effects in the QGSM
as developed in ref. [17] with respect to the description of
the electromagnetic nucleon form factors F1 and F2.

Another important extension of the QGSM in our
study will be the use of nonlinear baryon Regge trajecto-
ries. There are phenomenological evidences (see [18–20])
as well as theoretical arguments (see, e.g., [21–23] and ref-
erences therein) that hadronic Regge trajectories should
be nonlinear. This nonlinearity is not important for small
momentum transfer (squared) t, however, in the region of
t, which has already been reached in the experiment [1],
effects of nonlinearity become very essential. We will em-
ploy three different forms of nonlinear nucleon Regge tra-
jectories: i) a phenomenological one, which becomes linear
at large t, and two trajectories of ii) logarithmic and iii)
square-root type, which are the limiting cases for a certain
class of nonlinear trajectories allowed in dual models (see,
e.g., [21,22])2. By extrapolating our amplitudes to large
angles we can figure out to what momentum transfer t the

1 In case of fig. 1 we have in the intermediate state a string
with a quark and a diquark at the ends which corresponds to
a nucleon Regge trajectory.

2 As was demonstrated recently by Brisudová, Burakovsky
and Goldman [23] the latter trajectories arise naturally in the
QCD motivated model with a screened quark-antiquark poten-
tial or in the string model with a variable string tension.
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Fig. 2. Planar diagrams describing the binary reactions
a) π0π0 → π+π−, b) NN̄ → π+π−, c) pp̄ → NN̄ .

“soft QGSM tails” are still important before the PQCD
regime becomes dominant.

In Section 2 we outline the QGSM and its relation
to Regge theory and introduce hadron-quark and quark-
hadron transition amplitudes that are described by planar
graphs. In Section 3 we construct the γd → pn amplitude
taking into account explicit spin variables. In Section 4 we
present the results of our calculations in comparison to the
data [1] while Section 5 concludes our present study.

2 The Quark-Gluon Strings Model

In order to introduce the basic features of the QGSM,
we consider the binary reactions π0π0 → π+π−, NN →
π+π− and pp → NN , which at large values of the in-
variant energy (squared) s and finite values of the 4-
momentum transfer (squared) t can be described by pla-
nar diagrams with t-channel valence-quark exchanges as
shown by the diagrams a)-c) in fig. 2. Here the single and
double solid lines correspond to valence quarks and di-
quarks, respectively, while soft gluon exchanges between
these lines are not shown. According to the topological
1/Nf expansion [8,9,24], these planar diagrams are ex-
pected to give the dominant contributions to the corre-
sponding amplitudes in the limit Nf � 1 and Nc/Nf ∼ 1.
In the case of pion and nucleon interactions —as consid-
ered here— the exchanges of light u, d, and s quarks are
mainly important and the parameter of the expansion is
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not small, i.e. 1/Nf = 1/3. However, in case of ampli-
tudes for exclusive reactions with specific quantum num-
bers in the t-channel the actual expansion parameter is
1/N2

f ∼ 1/9 such that the expansion is expected to work.

2.1 Transition probabilities

Each planar diagram of the topological expansion has a
simple interpretation within the framework of the space-
time pattern formulated in terms of a color tube (or color
string) [9,25]. As an example we consider the space-time
picture of the binary reaction π0π0 → π+π− (cf. fig. 2a)).
At high center-of-mass (c.m.) energy

√
s, this reaction oc-

curs due to a specific quark configuration in each pion,
where (in the c.m. system) one quark (antiquark) takes
almost the entire hadron momentum and plays the role
of a spectator, while the valence antiquark (quark) is
rather slow. The difference in the rapidities ∆y between
the quark q and antiquark q̄ in each pion is

∆y = yq − yq̄ � 1
2
ln

(
s

s0

)
, (1)

with the scale s0 � 1 GeV2. Then the two “slow” valence
partons q and q̄ from π0 and π0 annihilate, and the fast
spectator quark and antiquark continue to move in the
previous directions and form a color string in the inter-
mediate state. After that, the string breaks due to the
production of a qq̄-pair from the vacuum and formation of
the π+π− system in the final state. We note, that the same
space-time pattern holds for the diagram of fig. 2b) with
the only difference, that the string is formed after annihi-
lation of a diquark-antidiquark pair from the NN -system
in the initial state. Correspondingly, the graph of fig. 2c)
shows the formation of the qq string due to annihilation
of the valence diquark-antidiquark pair in the initial state
and the production of another diquark-antidiquark pair
due to the breaking of the string.

The annihilation of the initial qq (or (qq)(qq)) pair
takes place when the gap in rapidity of the valence q and q
(or (qq)(qq)) is small (both interacting partons are almost
at rest in c.m.s.) and the relative impact parameter |b⊥−
b0⊥| is less than their interaction radius. It is possible to
prove that the probability to find a valence quark with a
rapidity yq at impact parameter b⊥ inside a hadron can
be written as [6,9,25]

w (yq − y0,b⊥ − b0⊥) =
c

4πR2(s)
exp

[
−β(yq − y0)− (b⊥ − b0⊥)2

4R2(s)

]
, (2)

where c is a normalization constant, y0 is the average ra-
pidity, b0⊥ is the transverse coordinate of the c.m. system
in the impact-parameter representation. Furthermore, it
is possible to relate the parameter β and the effective
interaction radius squared R2(s) in (2), that specify the
quark distribution inside a hadron, to the phenomenologi-
cal parameters of a Regge trajectory αi(t) which gives the

dominant contribution to the amplitude for the considered
planar graph. In this case one gets

R2(s) = R2
0 + α′

i(yq − y0) , β = 1− αi(0) , (3)

where α′
i = α′

i(0) is the slope of the dominant Regge tra-
jectory.

Due to the creation of a string in the intermediate
state the amplitude of a binary reaction ab → cd has the
s-channel factorization property, i.e. the probability for
the string to produce different hadrons in the final state
does not depend on the type of the annihilated quarks and
is only determined by the flavours of the produced quarks.
The same independence also holds for the production of
the color string in the intermediate state from the initial
hadron configuration: it depends only on the type of the
annihilated quarks. This s-channel factorization has been
formulated in refs. [6,9,25] in terms of transition proba-
bilities as defined by eq. (2).

2.2 Transition amplitudes

Following ref. [17] we now generalize this approach
by introducing the amplitudes T̃ ab→qq̄(s,b⊥) and
T̃ qq̄→cd(s,b⊥), that describe the formation and the fission
of an intermediate string, respectively. The amplitude for
the binary reaction ab → cd described by the planar graph
of fig. 1a) ( b) or c)) can be written —employing the s-
channel factorization property— as a convolution of two
amplitudes, i.e.

Aab→cd (s,q⊥) =
i

8π2s

∫
d2k⊥ T ab→qq (s,k⊥)T qq→cd (s,q⊥ − k⊥) (4)

in momentum representation, or as the product

Ãab→cd(s,b⊥) =
i

2s
T̃ ab→qq̄(s,b⊥) T̃ qq̄→cd(s,b⊥) (5)

in impact-parameter representation.
The solution for the quark-hadron transition ampli-

tudes T qq→ππ (s,k⊥) and T qq→NN (s,k⊥) at large in-
variant energy

√
s can be found using single Regge-

pole parameterizations of the binary hadronic amplitudes
Aπ

0π0→π+π−
, ANN→ππ and ANN→NN

Aπ
0π0→π+π−

(s, t) = NM

(
− s

m2
0

)αM (t)

exp
(
R2

0M t
)
,

ANN→ππ (s, t) = NB

(
− s

m2
0

)αB(t)

exp
(
R2

0Bt
)
,

ANN→NN (s, t) = ND

(
− s

m2
0

)αD(t)

exp
(
R2

0Dt
)
.

(6)

Here αM (t), αB (t) and αD (t) are the dominant meson,
baryon and diquark-antidiquark trajectories while NM ,
NM and ND are normalization constants; m2

0 = s0 and
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R0i is the interaction radius for the i-th trajectory. We
have the following intercepts and slopes for the dominant
Regge trajectories:

αM (0) � 0.5, αB (0) � −0.5, αD (0) � −1.5 (7)

and

α′
M (0) � α′

B (0) � α′
D (0) � 1.0 GeV−2 . (8)

Using equations (5) and (6), we can write the amplitudes
T̃ qq→ππ (s,b⊥) and T̃ qq→NN (s,b⊥) as

T̃ qq→ππ(s,b⊥) = N
1/2
M

1
2
√
πRM (s)

(
− s

m2
0

) (αM (0)+1)
2

× exp
(
− b2

⊥
8R2

M
(s)

)
,

T̃ qq→NN (s,b⊥) = N
1/2
D

1
2
√
πRD (s)

(
− s

m2
0

) (αD(0)+1)
2

× exp
(
− b2

⊥
8R2

D
(s)

)
,

(9)

where RM (s) and RD (s) are the effective interaction radii
given by

R2
M (s) = R2

0M + α′
M (0) ln

(
− s

m2
0

)
,

R2
D (s) = R2

0D + α′
D (0) ln

(
− s

m2
0

)
.

(10)

Now substituting the amplitudes (9) into the factorization
formula (5) we get

ÃNN→ππ(s,b⊥) =

(NMND)
1/2 1

4πRD (s)RM (s)

(
− s

m2
0

) 1
2 (αD(0)+αM (0))

× exp
[
−b2

⊥

(
1

8R2
M (s)

+
1

8R2
D (s)

)]
. (11)

For consistency of eqs. (11) and (6) we have to require
the following relations between the Regge parameters and
normalization constants [6,9,24]:

2
1

R2
B (s)

=
1

R2
M (s)

+
1

R2
D (s)

,

2α (0)B = αD (0) + αM (0) ,

(12)

(NMND)
1/2 1

RD (s)RM (s)
= NB

1
R2
B (s)

. (13)

If only light u, d quarks are involved we can assume that
[6,9,24]

α′
M (0) = α′

B (0) = α′
D (0) ≡ α′ (0) ,

R2
0M (0) = R2

0B (0) = R2
0D (0) ≡ R2

0 (0) ,

(NMND)
1/2 = NB .

(14)

Then relations (12) and (13) can be fulfilled at all s. Oth-
erwise, they can only be satisfied at sufficiently large s (cf.
ref. [24]).

3 Deuteron photodisintegration in the QGSM

Before going over to the case of particles with spin, we
first present the amplitudes for spinless constituents.

3.1 Spinless particles

Using the same approach as in the previous section we
now consider the reaction

γd → pn. (15)

By analogy to eq. (5) the amplitude corresponding to each
quark diagram of fig. 1 can be written as

Ãγd→pn(s,b⊥) =
i

2s
T̃ γd→q(5q)(s,b⊥) T̃ q(5q)→pn(s,b⊥),

(16)
where the amplitudes T̃ γd→q(5q)(s,b⊥) and
T̃ q(5q)→pn(s,b⊥) are given by (cf. eq. (9))

T̃ γd→q(5q)(s,b⊥) = N
1/2
M(6q)

1
2
√
πRM(6q) (s)

×
(
− s

m2
0

)(αM (0)+1)/2

exp

(
− b2

⊥
8R2

M(6q) (s)

)
,

T̃ q(5q)→pn(s,b⊥) = N
1/2
D(6q)

1
2
√
πRD(6q) (s)

×
(
− s

m2
0

)(αD(0)+1)/2

exp

(
− b2

⊥
8R2

D(6q) (s)

)
.

(17)

Here the effective interaction radii RM(6q) (s) and
RD(6q) (s) are defined as

R2
M(6q) (s) = R2

0M(6q) + α′
M (0) ln

(
− s

m2
0

)
,

R2
D(6q) (s) = R2

0D(6q) + α′
D (0) ln

(
− s

m2
0

)
,

(18)

where R2
0M(6q) and R2

0D(6q) are, in general, different from
R2

0M and R2
0D in eq. (10).

3.2 Full amplitudes with spin variables

In case of constituents with explicit spin we write the
deuteron photodisintegration amplitude in the form

〈p3, λp; p4, λn|T̂ (s,p3⊥) |p2, λd; p1, λγ〉 =
i

8π2s

∫
d2k⊥ 〈λp;λn|T̂ q(5q)→pn (s,k⊥) |λq;λ(5q)〉

×〈λq;λ(5q)|T̂ γd→q(5q) (s,p3⊥ − k⊥) |λd;λγ〉 , (19)
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where p1, p2, p3, and p4 are the 4-momenta of the photon,
deuteron, proton, and neutron, respectively, while λi is
the s channel helicity of the i-th particle. Furthermore, we
make the simplifying assumption that the spin of the (5q)
state is 1/2. Then we can write the amplitude T̂ γd→q(5q)

as

〈λq;λ(5q)|T̂ (s,k⊥) |λd;λγ〉 = ūλq
(pq)ε̂λγ

×
(
−k̂ +mq

k2 −m2
q

)
ε̂λd

vλ(5q)(p(5q)) Dγd→q(5q)(s,k⊥) , (20)

where ελd
and ελγ

are the deuteron and photon polariza-
tion vectors, Dγd→q(5q)(s,k⊥) is the scalar amplitude and
mq is the quark mass. In analogy to qq → NN , which
was analysed in ref. [17], we can describe the spin struc-
ture of the amplitude T̂ q(5q)→pn in terms of eight invariant
amplitudes

〈λp;λn|T̂ q+(5q)→pn (s,k⊥) |λq;λ(5q)〉 =
D1(s,k⊥) δλp λq

δλn λ(5q)

+D2(s,k⊥) (σy)λp λq
δλn λ(5q)

+D3(s,k⊥) δλp λq
(σy)λn λ(5q)

+D4(s,k⊥) (σx)λp λq
(σx)λn λ(5q)

+D5(s,k⊥) (σy)λp λq
(σy)λn λ(5q)

+D6(s,k⊥) (σz)λp λq
(σz)λn λ(5q)

+D7(s,k⊥) (σx)λp λq
(σz)λn λ(5q)

+D8(s,k⊥) (σz)λp λq
(σx)λn λ(5q) , (21)

where the z- and x-axes are directed along the photon
momentum and the momentum transfer k⊥, respectively,
and the y-axis is orthogonal to the scattering plane.

Now the experimental data on the proton form factor
are in agreement with the assumption that the dominant
contribution stems from the amplitude corresponding to
the conservation of the s-channel helicities (cf. ref. [17]).
Here we shall use the same assumption and take into ac-
count only the amplitude D1(s,k⊥). We thus find

〈λp;λn|T̂ (s,p3⊥) |λd;λγ〉 =
i

8π2s

∫
d2k⊥ ūλp

(p3)ε̂λγ

(
−k̂ +mq

k2 −m2
q

)
ε̂λd

vλn
(p4)

×Dγd→q(5q)(s,k⊥) D1(s,p3⊥ − k⊥). (22)

Furthermore, taking into account that at high energy
pγ � √

s0 and finite momentum transfer t � |p3⊥|2 � s0

the momentum k is almost transversal k = (k0,k⊥, kz),

where k0 � kz � O

(
s0

2pγ

)
and

∫
d2k⊥ k⊥(...) ∼ p3⊥, we

find the following representation for the spin structure of
the γd → pn amplitude:

〈λp;λn|T̂ (s,p3⊥) |λd;λγ〉 =
ūλp

(p3)ε̂λγ
(−A(s, t)p3⊥ · γ +B(s, t)m) ε̂λd

vλn
(p4) , (23)

where

A(s, t) =
i

8π2s

∫
d2k⊥

k⊥ · p3⊥
|p3⊥|2

1
k2 −m2

q

× Dγd→q(5q)(s,k⊥) D
q(5q)→pn
1 (s,p3⊥ − k⊥),(24)

B(s, t) =
i

8π2s

mq

m

∫
d2k⊥

1
k2 −m2

q

× Dγd→q(5q)(s,k⊥) D
q(5q)→pn
1 (s,p3⊥ − k⊥) (25)

and m is the nucleon mass. In the case of a Gaus-
sian parametrization for Dγd→q(5q)(s,k⊥) and D1 (in eqs.
(24,25)) the ratio R = A(s, t)/B(s, t) is a smooth func-
tion of t. We, furtheron, assume that it is a constant and
consider this constant as a free parameter.

The differential cross-section for the reaction γd → pn
then is

dσIγd→pn

dt
=

1
64πs

1
(pcm
γ )2

[
St |B(s, t)|2 + Su |B(s, u)|2

+(−1)I+1 2Stu Re(B(s, t)B∗(s, u))
]
, (26)

where I is the isospin of the reaction, i.e. I = 1 (or 0) for
isovector (or isoscalar) photons. The kinematical functions
St, Su, Stu in (26) are given by

St =
1
6

∑
λγ , λd

Sp
[
ε̂λγ

(−Rp3⊥ · γ +m) ε̂λd
(p̂4 −m)

× ε̂�λd
(−Rp3⊥ · γ +m) ε̂�λγ

(p̂3 +m)
]
,

Su =
1
6

∑
λγ , λd

Sp
[
ε̂λd

(−Rp3⊥ · γ +m) ε̂λγ
(p̂4 −m)

× ε̂�λγ
(−Rp3⊥ · γ +m) ε̂�λd

(p̂3 +m)
]
,

Stu =
1
6

∑
λγ , λd

Sp
[
ε̂λγ

(−Rp3⊥ · γ +m) ε̂λd
(p̂4 −m)

× ε̂�λγ
(−Rp3⊥ · γ +m) ε̂�λd

(p̂3 +m)
]
. (27)

To generalize (23) and (27) to large angles, we take into
account that k in (22) is on average half of the total mo-
mentum transfer, i.e. k ≈ 0.5(p3 − p1). Then in eqs. (23)
and (27) we can substitute −p3⊥ · γ by p̂3 − p̂1.

In order to fix the energy dependence of the amplitude
B(s, t), we require that

dσ
dt

∣∣∣∣
Θc.m.=0

∼
(

s

s0

)2αN (0)−2

. (28)

Taking into account that St ∼ s for s � s0, we find that

B(s, t) ∼
(

s

s0

)αN (0)−1/2

. (29)

Moreover, a good approximation for the energy depen-
dence of St(Θc.m. = 0) in the region pγ = 1–7.5 GeV is

St| Θc.m.=0 ≈ Cp2
γ , (30)
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with C = (36±3) GeV2. Using this approximation we can
relate B(s, t) to the Regge-pole exchange amplitude as

|B(s, t)|2 = 1
Cp2

γ

|MRegge(s, t)|2 , (31)

where

MRegge(s, t) = F (t)
(

s

s0

)αN (t)

exp
[
−i

π

2

(
αN (t)− 1

2

)]
.

(32)
Here αN (t) is the trajectory of the nucleon Regge pole and
s0 = 4 GeV2 � m2

d.

3.3 Nonlinear nucleon Regge trajectories

According to the data on πN backward scattering (see,
e.g., the review [18]) the nucleon Regge trajectory has a
nonlinearity:

αN (t) = αN (0) + α′
N (0) t+

1
2
α′′
N (0) t

2 K(t), (33)

where αN (0) = −0.5, α′
N (0) = 0.9 GeV−2 are the

intercept and slope of the Regge trajectory, α′′
N (0) =

0.20–0.25GeV−4 is the coefficient of the nonlinear term.
In (33) we introduced also a cut-off function K(t). In ref.
[18] it was assumed that K(t) = 1. However, in this case
the amplitude will grow very fast with s at large t which
would violate unitarity. To prevent this fast growth it was
taken in ref. [5] as a powerlike cut-offK(t) = (1+t4/Λ4)−1.
Here we choose the exponential form

K(t) = exp
(−βt2

)
, (34)

with β = 0.008GeV−4. We mention that the small value
of β does not destroy the parameterization of α(t) for
−t ≤ 1.6 GeV2 found in ref. [18]. Note also that the phe-
nomenological Regge trajectory (33) with a powerlike or
exponential cut-off is nonlinear only for moderate values
of t; at large t the quadratic term becomes small and the
trajectory becomes essentially linear again.

On the other hand, the QCD motivated Regge trajec-
tories as suggested by Brisudová, Burakovsky and Gold-
man (BBG) [23] show a different behaviour at large t. As
shown in ref. [23] the screened quark-antiquark potential

V (R) =
[
−α

R
+ σR

] 1− exp(−µR)
µR

, (35)

with σ =(400 MeV)2, µ−1 = 0.90 ± 0.20 fm, α = 0.21 ±
0.1, found in ref. [26] to describe the lattice QCD data
with dynamical Kogut-Susskind fermions, leads to non-
linear meson Regge trajectories. These trajectories can be
parametrized on the whole physical sheet as

α(t) = α(0) + γ [T ν − (T − t)ν ] , (36)

with 0 ≤ ν ≤ 1/2. The limiting cases ν = 1/2 and ν → 0
(γν = const) correspond to the square-root trajectory

α(t) = α(0) + γ
[√

T −√
T − t

]
, (37)

and the logarithmic trajectory

α(t) = α(0)− (γν) ln
(
1− t

T

)
, (38)

respectively. Such trajectories arise not only for heavy
quarkonia, but also for light-flavour hadrons.

To find the possible form of nonlinear Regge trajec-
tories for mesons composed of light quarks, Brisudová,
Burakovsky and Goldman [23] have considered an analyt-
ical model for a string with massless ends and variable
string tension. This model describes a colour flux tube
stretched between quark and antiquark at the tube ends.
The varying string tension was introduced to simulate dy-
namical effects such as the weakening of the flux tube
due to pair (qq̄) creation. Within this model they were
able to recover the form of the underlying potential for a
given Regge trajectory. They found potentials leading to
“square-root” and “logarithmic” Regge trajectories and
demonstrated that these potentials are very similar to the
screened potential of the unquenched lattice QCD calcu-
lations. Moreover, they were able to describe very well
all the available meson spectra using a square-root Regge
trajectory. Nevertheless, the “logarithmic” form of Regge
trajectories cannot be excluded by now and new data on
higher excited states are necessary.

We know from experiment that the slopes of meson
and baryon Regge trajectories are almost the same α′

N �
α′
ρ � 0.9 − 1 GeV−2 (see, e.g., the review [9]). The slope
is determimed by the string tension which depends on the
colour charges at the string ends. Therefore, the baryon
Regge trajectory can be described by the colour flux model
with quark and diquark at the ends (cf. ref. [27]). This
means that for the baryon Regge trajectories we can also
use the forms suggested by BBG.

When using the QCD motivated trajectories (37) and
(38) we take their intercepts and slopes the same as in
case of the phenomenological trajectories. Therefore, only
a single free parameter will be left. We choose T = TB as
this free parameter and fix it by comparing our results to
experimental data.

4 Cross-sections for deuteron
photodisintegration in the QGSM

4.1 Choice of parameters

The dependence of the residue F (t) on t can be taken from
refs. [15,16] in the form

F (t) = B

[
1

m2 − t
exp (R2

1t) + C exp (R2
2t)

]
, (39)

where the first term in the square brackets contains the nu-
cleon pole and the second term accounts for the contribu-
tion of non-nucleonic degrees of freedom in the deuteron.
We adopted the following sets of parameters:
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Fig. 3. Differential cross-section for the reaction γd → pn (multiplied by s11) as a function of the photon laboratory energy
Eγ at different angles in the center-of-mass frame in comparison to the experimental data from ref. [1]. The bold solid and
dash-dotted curves present results of calculations using a phenomenological Regge trajectory for parameter Set G and Set K,
respectively. The thin lines show the results obtained in the case of the linear Regge trajectories, i.e. for α′′

N(0) = 0, with the
same parameters of the residue as in Set G (solid line) and Set K (dash-dotted line).

i) for the case of the phenomenological nonlinear trajec-
tory

Set K: B = 3.65 · 10−4 kb1/2 GeV, C = 0.7 GeV−2,

R2
1 = 1 GeV−2, R2

2 = −0.1 GeV−2,

α′′
N(0) = 0.20GeV−4 ,

Set G: B = 4.01 · 10−4 kb1/2 GeV, C = 0.7GeV−2,

R2
1 = 2 GeV−2, R2

2 = 0.03 GeV−2,

α′′
N(0) = 0.25GeV−4 (40)

and the ratio R = A(s, t)/B(s, t) = 1 for both sets K and
G. The parameters of the residue (39) in Set K, except
the overall normalization factor B and R2

1, are the same
as in ref. [15] which were fitted to data on the reaction
pp → π+d for −t ≤ 1.6 GeV2. Therefore, in this case
we have only two free parameters of the residue B and
R2

1 which we fixed by the experimental data on deuteron
photodisintegration at Θc.m. = 36◦. We note that Set G
corresponds to positive values of R2

2;
ii) for the case of the QCD motivated Regge trajecto-

ries we have used the parameters of the residue from
Set G except an overall normalization factor B taken
as B = 1.8 · 10−4 kb1/2 GeV for the logarithmic and
B = 2.0 · 10−4 kb1/2 GeV for the square-root trajec-
tory. Furthermore, we choose R = A(s, t)/B(s, t) = 2 for
both trajectories (logarithmic and square-root). In order
to achieve a good agreement with the data at Θc.m. = 36◦,
the nonlinearity parameter T = TB was chosen in the in-
terval 1.5–1.7 GeV2.

4.2 Energy dependence of the differential cross-section

In fig. 3 we present the energy dependence of dσ/dt · s11

at different c.m. angles calculated for the case of the
phenomenological nonlinear trajectory (33). The exper-
imental points are taken from [1]. The bold solid and
dash-dotted lines present results of calculations within the
QGSM for parameters of the Set G and Set K, respec-
tively. The thin lines show the results obtained in the case
of the linear Regge trajectories with residue parameters
from Set G (thin solid line) and Set K (thin dash-dotted
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Fig. 4. Differential cross-section for the reaction γd → pn (multiplied by s11) as a function of the photon laboratory energy Eγ

at different angles in the center-of-mass frame in comparison to the experimental data from ref. [1]. The dashed and dash-dotted
curves are calculated using the logarithmic and square-root Regge trajectories, respectively.

line). For Θc.m. = 36◦ (see the top-left part) all the curves
except the thin solid line are in a reasonable agreement
with the data. Therefore, for this angle it is also possible
to describe the data using a linear nucleon Regge trajec-
tory. However, at large angles Θc.m. = 52◦, 69◦ and 89◦
the nonlinearity becomes essential since the thin curves
underestimate the experimental points substantially. The
use of the nonlinear Regge trajectory instead provides a
reasonable description of the existing data and reproduces
the scaling behavior of dσ/dt ·s11 for Θc.m. = 69◦ and 89◦
at energies Eγ ≤ 5 GeV. At higher energies all curves drop
very fast.

In fig. 4 the energy dependence of dσ/dt · s11 at differ-
ent c.m. angles is calculated for the cases of the square-
root (37) (dash-dotted lines) and logarithmic (38) (dashed
lines) Regge trajectories. The lower and upper curves
were calculated with TB =1.7 and 1.5 GeV2, respectively.
As noted before, the ratio of the invariant amplitudes
R = A(s, t)/B(s, t) is taken as R = 2. It is seen that
the result of the square-root trajectory leads to a cross-
section which underestimates the data for Θc.m. ≥ 52◦,
while the logarithmic trajectory provides a reasonable de-
scription of the data at all angles (with the exception of

a single point at Θc.m. = 89◦, Eγ = 4 GeV). Therefore,
new measurements of dσ/dt at Eγ ≥ 5 GeV will provide
a crucial check of the QGSM predictions.

4.3 Angular dependence of the cross-section

In fig. 5 we show the angular dependence of the differ-
ential cross-section as a function of Θc.m. calculated for
Eγ = 1.6GeV and 3.98 GeV using the phenomenologi-
cal nonlinear trajectory (33) with α′′(0) = 0.25 GeV−4

and residue parameters of the set G. Here we have as-
sumed isovector photon dominance and therefore obtain
a forward-backward symmetric cross-sections. Both angu-
lar distributions have forward and backward peaks, which
are mainly related to the choice R = A(s, t)/B(s, t)=1 in
this case. The agreement between data and calculations is
fairly good.

4.4 Forward-backward asymmetry

In fig. 6 we present the angular dependence of dσ/dt · s11

at different energies for the logarithmic (38) Regge trajec-
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Fig. 5. Differential cross-section for the reaction γd → pn
(multiplied by s11) as a function of the c.m. angle for Eγ =
1.6 GeV and 3.98 GeV (upper and lower parts, respectively).
The experimental data are from ref. [1]. The bold solid curves
are results of calculations using the phenomenological Regge
trajectory for parameter Set G.

tory. The lower and upper parts correspond to Eγ = 3.98
and 1.6 GeV, respectively. The two dashed curves in each
figure were calculated assuming isovector photon domi-
nance. In this case we have a forward-backward symme-
try of the differential cross-section. At 1.6 GeV the angu-
lar distribution has a dip at Θc.m. =0◦ and 180◦ which is
related to the different choice of the ratio R (R = 2) as
compared to the previous case (R = 1).

A forward-backward asymmetry arises when we take
into account the interference of two amplitudes which de-
scribe the contribution of isovector (ρ like) and isoscalar
(ω like) photons. In this case the differential cross-section
can be written as

dσρ+ωγd→pn

dt
=

1
64πs

1
(pcm
γ )2

[St |Bρ(s, t) +Bω(s, t)|2

+Su |Bρ(s, u)−Bω(s, u)|2 + 2Stu Re(Bρ(s, t)

+Bω(s, t))�(Bρ(s, u)−Bω(s, u))]. (41)

Using the vector dominance model we take

Bω(s, t)=Bρ(s, t)/
√
8 , Bω(s, u)=Bρ(s, u)/

√
8 . (42)

The data at 1.6 GeV provide an evidence for a forward-
backward asymmetry because the values of the differen-
tial cross-sections at backward angles are smaller than for
the corresponding angles in the forward region. The pre-
dictions of the simple VDM model with ρ-ω interference
are in qualitative agreement with the data (long-dashed
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Fig. 6. Differential cross-section for the reaction γd → pn
(multiplied by s11) as a function of the c.m. angle for Eγ =
1.6 GeV and 3.98 GeV (upper and lower parts, respectively).
The experimental data are from ref. [1]. The dashed curves are
calculated using logarithmic Regge trajectories with TB = 1.5
and 1.7 GeV2. The long-dashed curve presents the result of
calculations which take into account the interference of the
isoscalar and isovector parts of the γd → pn amplitude (see
text).

curves). However, for definite conclusions we will need
more systematic data at smaller angles in the forward and
also in the backward regions.

5 Conclusions

In this work we have analyzed deuteron photodisintegra-
tion at GeV energies within the framework of the Quark-
Gluon Strings Model with nonlinear Regge trajectories.
We have taken into account spin effects assuming the dom-
inance of those amplitudes that conserve s-channel helic-
ities. Our parameters were fixed partly by previous anal-
ysis of other data (i.e. on the reaction pp → dπ+) and
partly by the new TJNAF data at Θc.m. = 36◦. We have
found that the QGSM provides a reasonable description
of the new TJNAF data on deuteron photodisintegration
at large momentum transfer t and that the energy depen-
dence of dσ/dt at Θc.m. = 36–90◦ provides new evidence
for a nonlinearity of the Regge trajectory αN (t). The best
agreement with the data can be achieved using the QCD
motivated logarithmic form of the Regge trajectory. Evi-
dently the QGSM predicts that dσ/dt at fixed c.m. angle
will decrease faster than any finite power of 1/s and at
sufficiently large energies the perturbative regime will be-
come dominant. Therefore, it is very important to have
new data at larger energies to further check the energy



364 The European Physical Journal A

behaviour of dσ/dt at different c.m. angles as predicted
by the QGSM.

We have also investigated the angular dependence of
the cross-section at different energies. The differential
cross-section may have a dip at forward angles if the
amplitude with a charge-like photon coupling (A(s, t))
is dominant. By introducing the interference of isovector
and isoscalar photon contributions, we have calculated the
forward-backward asymmetry of the cross-section, which
can be quite pronounced at Eγ = 1.6 GeV, but will be
a decreasing function of energy. New data for small and
large angles (forward and backward) will be important to
check these predictions.

This work is supported by DFG and RFFI.
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